Diffuse X-ray streaks from stacking faults in Si analyzed by atomistic simulations

K. Nordlund
Accelerator Laboratory, P. O. Box 43, FIN-00014 University of Helsinki, Finland

U. Beck and T. H. Metzger
Sektion Physik and Center for NanoScience (CeNS), LMU München, Geschwister-Scholl-Platz 1, D-80539 München, Germany

J. R. Patel
SSRL/SLAC, Stanford University, Stanford, CA 94309, USA
ALS/LBL, 1 Cyclotron Road, Berkeley, CA 94720, USA
(December 20, 1999)

Since extrinsic stacking faults can form during post-implantation annealing of Si, understanding their properties is important for reliable control of semiconductor manufacturing processes. We demonstrate how grazing incidence X-ray scattering methods can be used as a nondestructive means for detecting extrinsic stacking faults in Si. Atomistic analysis of diffuse intensity streaks is used to determine the size of the faults, the minimum size at which the streak pattern in the scattering will be visible, and the magnitude of atomic displacements in the center of the stacking fault by choosing values for the incidence angle α_i and the exit angle α_f close to the critical angle of total external reflection α_{c}^{10} Thus we could probe the near surface region affected by the implantation process. The vicinity of surface reflections with scattering planes perpendicular to the sample surface were investigated.

For data collection a one-dimensional position sensitive detector (PSD) was used, which could be operated in two different modes. The PSD is placed parallel to the sample surface at a fixed exit angle. Thus the vicinity of the surface peak could be mapped in terms of a $Q_{\perp}Q_{\|}$-plane of reciprocal space at constant $Q_{\|}$. In the perpendicular mode the PSD is normal to the sample surface, so that $Q_{\perp}Q_{\|}$ mappings could be efficiently recorded. The details of the measurement procedure are described elsewhere11.

Dislocation free, floating-zone Si (001) single crystals were implanted with 32 keV boron to a boron dose of 6×10^{15} ions/cm2. The implanted samples were rapid thermal annealed at 1070 °C for 10 seconds.

The resulting scattering pattern is illustrated in Fig. 1. The streaks observed along $\langle 111 \rangle$ directions in the experiments are quite similar to the streaks predicted to arise from bound stacking faults (Frank loops) in face-centered cubic metals8. Also, previous transmission electron microscopy studies of boron implanted and annealed Si as well as annealed silicon with high oxygen content show extrinsic Frank type stacking faults12. This strongly suggests that the streaks observed in Si arise from extrinsic stacking faults produced by interstitials precipitating on $\langle 111 \rangle$ planes. To gain certainty of this, and enable a more detailed analysis than that provided by the traditional analytical and numerical methods, we used the new atomistic method8,7 to simulate DXS from stacking faults in Si.

In the atomistic analysis method of Nordlund, Partyka and Averback8,7, the DXS from a defect is calculated by forming the atom coordinates of a defect, and surrounding it by a large sphere (usually having of the
order of 1 - 100 million atoms) of undisturbed lattice atoms. All the atoms in this sphere are relaxed to the closest potential energy minimum by an efficient adaptive-step conjugate gradient method, which gives the strain field surrounding the defect. The potential energy of the system is calculated from a classical interatomic potential known to describe the elastic properties of the material well. The X-ray scattering intensity \(S(K) \) can then be calculated from the relaxed atom cell by straightforward summation over atom coordinates \(\mathbf{R}_i \).

\[
S(K) = \left| \mathbf{f}_K \sum_i e^{-\sigma^2 \mathbf{R}_i^2 / 2a^2} e^{i K \cdot \mathbf{R}_i} \right|^2 ,
\]

where \(\sigma \) is a convolution factor speedup convergence of the sum, \(a \) the lattice constant and \(\mathbf{f}_K \) is the atomic form factor.\(^{3,13,14} \) Although the atomistic analysis scheme requires large computer capacity, it has the advantage that once it is implemented, the same method can be used to deal with any kind of defect, including very complex ones. Additional details of the method are given elsewhere.\(^{6,7} \)

We created interstitial loop (extrinsic stacking fault) configurations of different sizes by adding an extra double (111) atom plane\(^{15} \) in the center of a large atomistic simulation cell. The extra plane had the shape of either a regular triangle or a regular hexagon bound by dislocation line segments along (110) crystal directions. To study size effects, we used lengths of 8 and 20 \(\frac{1}{2}(110)a \) (where \(a \) is the lattice constant) for one side of the triangle or hexagon, corresponding to between 72 (for the 8-sided triangle), and 228 (for the 20-sided hexagon) extra atoms in the stacking fault. The X-ray scattering was then calculated using the method outlined above, using spheres with radii of at least 200 Å. The well-tested Stillinger-Weber\(^{16} \) and Tersoff\(^{17} \) force models were used to describe the potential energy of the atoms.

Figure 2 illustrates the simulated streaks produced by a hexagonal stacking fault with a side length of 14 \(\frac{1}{2}(110)a \) averaged over all possible stacking fault orientations. The reason that the simulated \(111 \) streak appears to have a peak is the presence of zero-intensity nodal points similar to those reported in metals.\(^8 \) The strong streak in the (111) direction (upper right) and the somewhat weaker streak seen in the \(111 \) direction are very similar to those seen in the experiments. The iso-intensity contours are not quite equal in shape because we were not able to simulate as large loops as those present in the experiment, or the scattering quite as close to the Bragg peak. But as we shall see below, we were still able to give a size estimate for the defects.

Although the basic features of the scattering are thus the same as those predicted by numerical methods,\(^8 \) the atomistic analysis method allowed us to quantitatively examine atomistic effects in the scattering. The inset in Fig. 2 shows iso-intensity contours for the scattering from stacking fault triangles of varying sizes. The results show that the characteristic streak pattern becomes visible between side lengths of 8 and 16 \(\frac{1}{2}(110)a \) i.e when the number of interstitial atoms in the fault is in the range 100 - 200. Comparison of the streak shapes and widths for triangular and hexagonal faults further showed that the scattering pattern is very similar when the number of atoms in the fault is the same, i.e. that the streak shape is not sensitive to the exact shape of the fault.

We further used the atomistic simulations to test Václav Holiy’s analytical model for the width of the \(\{111\} \) streaks.\(^{11} \) The model predicts the shape of the scattering for a circular Frank loop of diameter \(d \). When we defined the effective diameter \(d^* \) of a hexagonal stacking fault to be the average of the major and minor axes (i.e. \(d^* = 1 + \sqrt{3}/2l \), where \(l \) is the length of one side), we obtained excellent agreement between Holiy’s model and the simulations. This shows that Holiy’s model can be used to give a reliable size estimate even for non-circular loops. Using Holiy’s model to analyze the experimental data showed that the average effective diameter \(d^* \) of the
stacking faults in Fig. 1 is 710 Å.

Analysis of the experimental intensity profile along the (111) direction along the streak shows a characteristic crossover between 1/q^2 and 1/q^4-dependence of the intensity (q is the distance to the Bragg peak in reciprocal space), similar to that occurring for large defect clusters. The experimental value for the crossover point is 0.34 1/Å (Fig. 3). The simulations showed that the location of this crossover is independent of the diameter of the loop over the entire size range examined. This indicates that the crossover must be related to the "strength" of the stacking fault, i.e. the thickness of the fault and the displacements of the atoms in the center of the fault.

![Graph](image_url)

FIG. 3. Scattering intensity along the [111] direction off the (220) Bragg peak. The straight solid lines indicate perfect 1/q^2 and 1/q^4 dependence of the scattering, and the vertical dotted lines the location of the crossover between 1/q^2 and 1/q^4 behaviour. The two different simulation models are calculated for stacking faults which have exactly the same shape and numbers of interstitial atoms, but different displacements in the stacking fault plane.

To further examine this, we simulated DDX from the same stacking fault with different displacements in the center of the fault. Since most Si interatomic potentials only have nearest-neighbour interactions, and all atoms in the center of a perfect stacking fault in Si have the ideal nearest-neighbour environment, the potentials give a stacking fault energy of zero, and thus no atomic displacements due to the incorrect stacking sequence of the diamond lattice. Therefore we modified the length scale of the Stillinger-Weber (SW) interatomic potential for the atoms in the stacking fault center to be able to examine the effect of the atomic displacements on the 1/q^2 - 1/q^4 - crossover. The tested modifications ranged from a 2 - 8 % increase in the nearest-neighbour separation and cutoff distance. The atoms outside the stacking fault center were still described by the ordinary SW potential, ensuring that the long-range strain field is realistic. The results are shown in Fig. 3. "Model 1" is the plain SW potential scattering. The location of the crossover was found to be reproduced well by models for which the average separation between double (111) atom layers (counted along the nearest-neighbour atom bond separating the layers) at and next to the stacking fault center plane was 2.42 ± 0.02 Å. One of these models is shown as "Model 2" in Fig. 3. In the present case

a more accurate determination of the displacements was not possible due to the artificial nature of the potential modification, but we note that with the method outlined here it will be possible to determine the displacements accurately when Si force models with realistic long-range interactions become available, or alternatively to test candidates for such models.

In conclusion, using diffuse X-ray scattering methods, we have detected extrinsic stacking faults in boron-implanted Si after a rapid-thermal anneal. We have further shown how atomistic analysis of X-ray scattering experiments can be used to determine the size of the fault and the magnitude of atomic displacements in the stacking fault plane.

The research was supported by the Academy of Finland under projects No. 45481 and 44215, and by the Deutsche Forschungsgemeinschaft project number PE 127/4. Grants of computer time from the Center for Scientific Computing in Espoo, Finland are gratefully acknowledged.

14. In the present analysis we neglect the atomic form factor for simplicity. Its inclusion would not affect the conclusions significantly.